Study

Computing

Modern Physics and its Application in Electrical Engineering

  • Class 60
  • Practice 0
  • Independent work 90
Total 150

Course title

Modern Physics and its Application in Electrical Engineering

Lecture type

Elective

Course code

183491

Semester

6

ECTS

5

Lecturers and associates

Course objectives

Solution of Schrödinger equation in three dimensions; Solutions for spherically symetric potential; Orbital angular momentum in quantum mechanics; Electron spin.
Time independent perturbation theory; Quantum processes: emission and absorption of radiation; Selection rules.
Maxwell equations and electromagnetic waves in dielectrics and conductors.
Reflection and refraction of electromagnetic waves; Dispersion relations; Normal and anomalous dispersion.
Reflection and refraction of electromagnetic waves; Dispersion relations; Normal and anomalous dispersion.
Magnetic polarization and magnetic moments.
Stark effect; Zeeman effect and Landau levels.
Midterm exam.
Quantum mechanics and electric and magnetic field couplings.
Artificial materials.
Artificial materials.
Quantum and plasmonic electromagnetic systems.
Novel optical guiding structures and sensors.
Novel radiating structures.
Final exam.

Required reading

D. Horvat (2011.), Fizika 2: titranje, valovi, elektromagnetizam, optika i uvod u modernu fiziku, Neodidakta
(.), S. Hrabar, Z. Sipus, I Malcic, „Broadening of Cloaking Bandwidth by Passive And Active Techniques“ // Transformation Electromagnetics and Metamaterials / Douglas, Werner ; Do-Hoon, Kwon (ur.). London : Springer, 2013, ISBN 978-1-4471-4996-5,
(.), S. Hrabar, „Application of Wire Media in Antenna Technology“ // Metamaterials and Plasmonics: Fundamentals, Modelling, Applications / Zouhdi, Said ; Sihvola, Ari ; Vinogradov, Alexey (ur.).Amsterdam : Springer, 2009., ISBN 978-1-4020-9407-1,
(.), S. Hrabar, „Waveguide Experiments to Characterize the Properties of SNG and DNG Metamaterials“ // Metamaterials, Physics and Engineering Explorations / Engheta, N. ; Ziolkowski, R. (ur.).U.S.A. : John Wiley and IEEE, 2006., ISBN 978-0471761020,

Minimal learning outcomes

  • Explain 3D Schrödinger equation
  • Explain orbital angular momentum in quantum mechanics and electron spin
  • Explain Maxwell equations and electromagnetic waves in dielectrics and conductors
  • Explain dispersion relations
  • Explain the impact of electric and magnetic fields on the energy levels of electrons
  • Explain the bonding of atoms to molecules and crystals
SHARE : Facebook Twitter