Physics of Materials

  • Class 45
  • Practice 13
  • Independent work 92
Total 150

Course title

Physics of Materials

Lecture type


Course code






Lecturers and associates

Course objectives

Wave equation in three dimensions .
Solutions, properties, interpretations; Quantum numbers set and possible values.
WBK approximation and applications (semiconductor junctions); Perturbation theory of QM and applications.
Function of the density of states and partition functions.
Bose–Einstein condensates (superconductivity, quantum computers).
Drift velocities, relaxation times, mobility.
Langevin function: applications.
Midterm exam.
Lorentz field; Clausius–Mossotti formula.
Magnetic moments related to Schrödinger equation; Electron spin. Landé factor. Hund’s rules and applications.
Spintronics and applications (quantum computers); NMR and applications (quantum computers).
Meissner effect. London equations. Penetration depth.
Cooper pairs and B.C.S. theory ; Magnetic flux quantization (fluxon). Quantum metrology; Phenomenology of crystal superconducting heterostructures.
Quantum Hall effect; Applications of HTS materials for technology (quantum dots, thin films, magnets).
Final exam.

Required reading

(.), Baće M.; Bistričić, L.; Borjanović, V.; Horvat, D.; Petković, T. Riješeni primjeri iz fizike materijala, recenzirani udžbenik. Hinus, Zagreb, 2011. ,
(.), Knapp, V; Colić, P. Uvod u električna i magnetska svojstva materijala, udžbenik. Školska knjiga, 2. izd. 1997.,
(.), 1. Rosenberg, H. M. The Solid State. An introduction to the Physics of solids for students of physics, material science, and engineering, 3rd ed., Oxford University Press, Oxford 1989.,
(.), 2. A. F. J. Levi, Applied quantum mechanics, Cambridge University Press, Cambridge, 2003. ,
(.), 3. L. Susskind and A. Friedman. Quantum Mechanics The Theoretical Minimum, Basic books - Perseus Books Group. New York, 2014.,
(.), 4. E. L. Wolf, Nanophysics and Nanotechnology, Wiley – VCH Verlag GmbH and Co. KGaA, Weinheim, 2004.,
(.), 5. L.I. Schiff, QUANTUM MECHANICS, McGraw-Hill Book Company, 3rd edition, 1968.

Minimal learning outcomes

  • Describe basic concepts of quantum-mechanical pictures of matter
  • Apply approximative methods of quantum mechanics into desription of matter
  • Derive wave equation in three dimensions
  • Apply classical and quantum distributions
  • Analyze potentials and conductivity in crystall latice
  • Explain fermion pairing in BCS theory at low temperatures
  • Describe quantum theory of magnetism and its application in quantum metrology and quantum computers
  • Analyze electric and magnetic properties of materials in technology
SHARE : Facebook Twitter