Image for
Naslovnica

Social network analysis

  • Predavanje 30
  • Vježbe 30
  • Samostalni rad 120
Ukupno 180

Naziv predmeta

Social network analysis

Tip predmeta

Elective

Oznaka predmeta

21-02-516

Semestar

2

ECTS

6

Nastavnici i suradnici

Sadržaj i cilj

With ready access to computing power, the popularity of social networking websites such as Facebook, and automated data collection techniques the demand for solid expertise in SNA has recently exploded. In this module, students learn how to conduct SNA projects and how to approach SNA with theoretic, methodological, and computational rigor.

The objectives of this module are to enable students to:
• Formalize different types of entities and relationships as nodes and edges and represent this information as relational data
• Plan and execute network analytical computations
• Use advanced network analysis software to generate visualizations and perform empirical investigations of network data
• Interpret and synthesize the meaning of the results with respect to a question, goal, or task
• Collect network data in different ways and from different sources while adhering to legal standards and ethics standards.

In this module students will learn about social network analysis as a type of analysis that measure networks of people and helps analysts determine how nodes (people) are connected and around what issues and key facts. With social network analysis, students can take a snapshot of the network and figure out both the network strengths and weaknesses, and use that to grow a better and more robust network for a greater and more dramatic impact, as part of data science process.

It is important for students to take this module in order to develop a knowledge and understanding of set of social network analysis concepts and metrics to systematically study these dynamic processes. Analysts in information visualization can also benefit by discovering patterns, trends, clusters, gaps, and outliers, even in complex social networks. Each day solutions for better network insights are being found that bring competitive advantages to business product developers, opportunities for government agency staffers, and new possibilities for nongovernmental social entrepreneur.

Literatura

Essential reading:
1. Hanneman, R.A., Riddle, M. (2005) Introduction to Social Network Methods, Riverside: University of California
2. Scott, J. (2007). Social network analysis: A handbook (2nd Ed.), Newbury Park: Sage

Recommended reading:
1. Knoke, D., Yang., S. (2008). Social Network Analysis, (2nd Ed), Newbury Park: Sage

Minimalni ishodi učenja

  • Objasniti osnovne principe stvaranja mreža.
  • Utvrditi moguće veze više vrsta mreža koje se javljaju u prirodi.
  • Utvrditi mjere centraliteta u analizi mreža.
  • Definirati scenarij koji će se riješiti socijalnim CRM i SNA tehnikama
  • Odabrati funkcionalnost analize društvene mreže u kontekstu analize složene mreže s većim brojem entiteta.
  • Opisati korake u prikupljanju, pripremi i obradi podataka pomoću profila na društvenim mrežama i softvera za analizu društvenih mreža.
  • Utvrditi najčešće funkcionalnosti softvera za analizu društvenih mreža

Željeni ishodi učenja

  • Objasniti osnovne principe stvaranja mreža.
  • Poredati prema kompleksnosti distribucije veza više vrsta mreža koje se javljaju u prirodi.
  • Odabrati mjere centraliteta u analizi mreža.
  • Objasniti faze planiranja i implementacije socijalnog upravljanja odnosima s klijentima u poslovnom subjektu.
  • Opisati funkcionalnosti analize društvenih mreža u svrhu analize složene mreže s većim brojem entiteta.
  • Primijeniti metode prikupljanja, pripreme i obrade podataka pomoću profila na društvenim mrežama i softvera za analizu društvenih mreža.
  • Odabrati određene funkcionalnosti softvera za analizu društvenih mreža.
Preuzmi vodič za studente
Podijeli: Facebook Twitter