
Decision-making support systems
- Predavanje 30
- Vježbe 30
- Samostalni rad 120
Naziv predmeta
Decision-making support systems
Tip predmeta
Elective
Oznaka predmeta
22-00-525
Semestar
5
ECTS
6
Nastavnici i suradnici
Sadržaj i cilj
This module is designed to enable students to learn the knowledge, and understanding to apply data mining techniques to solve business problems.
Students learn toidentify and understand basic algorithms for automatic data processing. Data mining results in a predictive model, but applications are far wider than the prediction itself, so it is used for any input and output mapping that is too hard to manually input or for which there are no clearly defined rules to be entered, or these rules change too often.
The objectives of this module are to enable students to:
• Evaluate decision support systems.
• Calculate and interpret results from attribute relevance analysis.
• Prepare data for modelling and make descriptive statistical analysis.
• Implement data mining model to solve business problem.
It is important for students to take this module to adopt basics of decision support systems, methods and tools, which include applying advanced analytical techniques, attribute relevance analysis with aim of constructing decision support system.
Literatura
Essential reading:
1. Sharda, R., Delen, D. and Turban, E., (2020). Analytics, Data Science, and Artificial Intelligence: Systems for Decision Support, London: Pearson
Recommended reading:
1. Tan, P., Steinbach, M. and Karpatne, A. (2019). Introduction to Data Mining, London: Pearson
Further reading:
1. Klepac, G., Kopal, R., and Mršić, L. (2015). Developing Churn Models Using Data Mining Techniques and Social Network Analysis (pp. 1-361). Hershey, PA: IGI
Minimalni ishodi učenja
- Klasificirati elemente sustava podrške odlučivanju.
- Izračunati analizu relevantnosti atributa.
- Ocijeniti upotrebu određene kvantitativne metode u sustavu podrške odlučivanju.
- Odabrati odgovarajuću kvantitativnu metodu za rješavanje problema u domeni sustava podrške odlučivanju.
- Analizirati podatke i izraditi cjelovito rješenje.
Željeni ishodi učenja
- Klasificirati složene elemente sustava podrške odlučivanju.
- Izračunati i objasniti analizu relevantnosti atributa.
- Ocijeniti upotrebu određene kvantitativne metode u sustavu podrške odlučivanju i opravdati uporabu odabrane metode.
- Odabrati odgovarajuću kvantitativnu metodu za rješavanje problema u domeni sustava podrške odlučivanju i predložiti rješenje.
- Analizirati podatke i izraditi cjelovito rješenje uz objašnjenje uzročnosti.